

ENTROPY:

Gaining Knowledge by Admitting Ignorance

Alexander Schekochihin

Rudolf Peierls Centre for Theoretical Physics University of Oxford
with thanks to James Binney, who convinced me that it's better to gamble than to count

What is a System?

A system is something that can be in one of a set of (micro)states

$$
\alpha=1,2,3, \ldots, \Omega \ggg \ggg 1
$$

A system is something that can be in one of a set of (micro)states

$$
\alpha=1,2,3, \ldots, \Omega \ggg \ggg 1
$$

There is a probability for it to be in each of these states:

$$
p_{1}, p_{2}, p_{3}, \ldots, p_{\alpha}, \ldots, p_{\Omega}, \quad \sum_{\alpha=1}^{\Omega} p_{\alpha}=1
$$

A system is something that can be in one of a set of (micro)states

$$
\alpha=1,2,3, \ldots, \Omega \ggg \gg 1
$$

There is a probability for it to be in each of these states:

$$
p_{1}, p_{2}, p_{3}, \ldots, p_{\alpha}, \ldots, p_{\Omega}, \quad \sum_{\alpha=1}^{\Omega} p_{\alpha}=1
$$

Each state has properties (quantum numbers): e.g., energies

$$
E_{1}, E_{2}, E_{3}, \ldots, E_{\alpha}, \ldots, E_{\Omega}
$$

(or momenta, angular momenta, spins, etc.)

What is a System?

A system is something that can be in one of a set of (micro)states

$$
\alpha=1,2,3, \ldots, \Omega \ggg \ggg 1
$$

There is a probability for it to be in each of these states:

$$
p_{1}, p_{2}, p_{3}, \ldots, p_{\alpha}, \ldots, p_{\Omega}, \quad \sum_{\alpha=1}^{\Omega} p_{\alpha}=1
$$

Each state has properties (quantum numbers): e.g., energies

$$
\begin{gathered}
E_{1}, E_{2}, E_{3}, \ldots, E_{\alpha}, \ldots, E_{\Omega} \\
\text { (or momenta, angular momenta, spins, etc.) }
\end{gathered}
$$

If we know p_{a}, we can calculate averages \leftrightarrow predict measurement outcomes
Mean energy: $U=\left\langle E_{\alpha}\right\rangle=\sum_{\alpha} p_{\alpha} E_{\alpha}$

What is a System?

A system is something that can be in one of a set of (micro)states

$$
\alpha=1,2,3, \ldots, \Omega \ggg \ggg 1
$$

There is a probability for it to be in each of these states:

$$
p_{1}, p_{2}, p_{3}, \ldots, p_{\alpha}, \ldots, p_{\Omega}, \quad \sum_{\alpha=1}^{\Omega} p_{\alpha}=1
$$

Each state has properties (quantum numbers): e.g., energies

$$
\begin{gathered}
E_{1}, E_{2}, E_{3}, \ldots, E_{\alpha}, \ldots, E_{\Omega} \\
\text { (or momenta, angular momenta, spins, etc.) }
\end{gathered}
$$

If we know p_{a}, we can calculate averages \leftrightarrow predict measurement outcomes
Mean energy: $U=\left\langle E_{\alpha}\right\rangle=\sum_{\alpha} p_{\alpha} E_{\alpha}$ external parameter
Pressure: $P=-\left\langle\frac{\partial E_{\alpha}}{\partial V}\right\rangle=-\sum_{\alpha} p_{\alpha} \frac{\partial E_{\alpha}}{\partial V^{\prime} \quad \text { (volume) }}$

What is a System?

A system is something that can be in one of a set of (micro)states

$$
\alpha=1,2,3, \ldots, \Omega \ggg \ggg 1
$$

There is a probability for it to be in each of these states:

$$
p_{1}, p_{2}, p_{3}, \ldots, p_{\alpha}, \ldots, p_{\Omega}, \quad \sum_{\alpha=1}^{\Omega} p_{\alpha}=1
$$

Each state has properties (quantum numbers): e.g., energies

$$
\begin{gathered}
E_{1}, E_{2}, E_{3}, \ldots, E_{\alpha}, \ldots, E_{\Omega} \\
\text { (or momenta, angular momenta, spins, etc.) }
\end{gathered}
$$

If we know p_{α}, we can calculate averages \leftrightarrow predict measurement outcomes
Mean energy: $U=\left\langle E_{\alpha}\right\rangle=\sum_{\alpha} p_{\alpha} E_{\alpha}$
More generally, Force $=-\sum_{\alpha} p_{\alpha} \frac{\partial E_{\alpha}}{\partial \text { Displacement }}$

What is a System?

A system is something that can be in one of a set of (micro)states

$$
\alpha=1,2,3, \ldots, \Omega \ggg \ggg 1
$$

There is a probability for it to be in each of these states:

$$
p_{1}, p_{2}, p_{3}, \ldots, p_{\alpha}, \ldots, p_{\Omega}, \quad \sum_{\alpha=1}^{\Omega} p_{\alpha}=1
$$

Each state has properties (quantum numbers): e.g., energies

$$
\begin{gathered}
E_{1}, E_{2}, E_{3}, \ldots, E_{\alpha}, \ldots, E_{\Omega} \\
\text { (or momenta, angular momenta, spins, etc.) }
\end{gathered}
$$

If we know p_{α}, we can calculate averages \leftrightarrow predict measurement outcomes
Mean energy: $U=\left\langle E_{\alpha}\right\rangle=\sum_{\alpha} p_{\alpha} E_{\alpha}$
E.g., tension: $f=\sum_{\alpha} p_{\alpha} \frac{\partial E_{\alpha}}{\partial L}$, magnetisation: $M=-\sum_{\alpha} p_{\alpha} \frac{\partial E_{\alpha}}{\partial B}$

Mean energy: $U=\left\langle E_{\alpha}\right\rangle=\sum_{\alpha} p_{\alpha} E_{\alpha}$
external parameter
(volume)
Pressure: $P=-\left\langle\frac{\partial E_{\alpha}}{\partial V}\right\rangle=-\sum_{\alpha} p_{\alpha} \frac{\partial E_{\alpha} \quad \text { (volum }}{\partial V}$

What Do We Want to Know?

What can be?

We know these from Quantum Mechanics (or, more broadly, physics)

$$
E_{\alpha}=E_{\alpha}(V, \text { parameters } \ldots)
$$

Mean energy: $U=\left\langle E_{\alpha}\right\rangle=\sum_{\alpha} p_{\alpha} E_{\alpha}$
external parameter
Pressure: $P=-\left\langle\frac{\partial E_{\alpha}}{\partial V}\right\rangle=-\sum_{\alpha} p_{\alpha} \frac{\partial E_{\alpha}}{\partial V}$, (volu

What Do We Want to Know?

How likely is it to happen?

This is what we want to determine.

The Philosophy of Good-Enough-ism

How likely is it to happen?
This is what we want to determine.

We do not need to know the p_{a} 's in any "true" sense. We just need to know such p_{a} 's that the few macroscopic quantities that we are ever likely to measure come out right.

Mean energy: $U=\left\langle E_{\alpha}\right\rangle=\sum_{\alpha} p_{\alpha} E_{\alpha}$
external parameter
Pressure: $P=-\left\langle\frac{\partial E_{\alpha}}{\partial V}\right\rangle=-\sum_{\alpha} p_{\alpha} \frac{\partial E_{\alpha} \quad \text { (volume) }}{\partial V^{\prime} \quad \text { (r) }}$

Trainspotter's Statistics

Technically speaking, to know this, we need to understand (or assume something about) the system's dynamics.

Also, we must believe that the time necessary for the system to visit all of its phase space is a reasonable time for us to wait.

This is not, however, how forecasting works...

Gambler's Statistics

$p_{a}=$ likelihood that the system is in α.

A fair and adequate assignment of likelihoods must be based on some information about the system, however incomplete.

Gambler's Statistics

$p_{\alpha}=$ likelihood that the system is in α.

A fair and adequate assignment of likelihoods must be based on some information about the system, however incomplete.

If we know nothing, the only adequate expectation is

$$
p_{\alpha}=\frac{1}{\Omega}
$$

(all states are equally probable)

Gambler's Statistics

Ludwig
Boltzmann
(1844-1906)

$p_{\alpha}=$ likelihood that the system is in α.

A fair and adequate assignment of likelihoods must be based on some information about the system, however incomplete.

If we know nothing, the only adequate expectation is

$$
p_{\alpha}=\frac{1}{\Omega} \quad \begin{aligned}
& \text { isolated system } \\
& \text { in equilibrium } \\
& \text { (Boltzmann's } \\
& \text { equal a priori probabilities } \\
& \text { postulate) }
\end{aligned}
$$

Gambler's Statistics

$p_{a}=$ likelihood that the system is in α.

A fair and adequate assignment of likelihoods must be based on some information about the system, however incomplete.

What if we know one thing, e.g., mean energy:

$$
U=\left\langle E_{\alpha}\right\rangle=\sum_{\alpha} p_{\alpha} E_{\alpha}
$$

This is one constraint on $\Omega \ggg>1$ likelihoods.
How do we work out p_{α} 's using this and only this information?

A Fair Game

Principle: use knowledge available, admit ignorance of everything else.

A Fair Game

Principle: use knowledge available, admit ignorance of everything else.

1) Randomly assign $N \gg \Omega$ "units of likelihood" to each of Ω states: N_{α} to state α. Then

$$
p_{\alpha}=\frac{\mathcal{N}_{\alpha}}{\mathcal{N}}
$$

A Fair Game

Principle: use knowledge available, admit ignorance of everything else.

1) Randomly assign $N \gg \Omega$ "units of likelihood" to each of Ω states:

$$
N_{\alpha} \text { to state } \alpha \text {. Then }
$$

$$
p_{\alpha}=\frac{\mathcal{N}_{\alpha}}{\mathcal{N}}
$$

2) Check that these p_{α} satisfy constraints imposed by knowledge. If not, keep trying until they do.

A Fair Game

Principle: use knowledge available, admit ignorance of everything else.

1) Randomly assign $N \gg \Omega$ "units of likelihood" to each of Ω states:

$$
N_{\alpha} \text { to state } \alpha \text {. Then }
$$

$$
p_{\alpha}=\frac{\mathcal{N}_{\alpha}}{\mathcal{N}}
$$

2) Check that these p_{α} satisfy constraints imposed by knowledge. If not, keep trying until they do.

The most likely outcome of this game is the one that can be obtained in the largest number of ways:
this maximum is very sharp at large N

$$
W=\frac{\mathcal{N}!}{\mathcal{N}_{1}!\cdots \mathcal{N}_{\Omega}!} \rightarrow \max \text { (subject to constraints) }
$$

(thus, we determine p_{a} 's by maximising W in this way)

A Fair Game

Using Stirling's formula $\ln \mathcal{N}!=\mathcal{N} \ln \mathcal{N}-\mathcal{N}+O(\ln \mathcal{N})$, get:

$$
\begin{aligned}
\ln W & =\underbrace{\mathcal{N} \ln \mathcal{N}-\mathcal{N}}_{\sum_{\alpha}\left(\mathcal{N}_{\alpha} \ln \mathcal{N}+\mathcal{N}_{\alpha}\right)}+O(\ln \mathcal{N})-\sum_{\alpha}\left[\mathcal{N}_{\alpha} \ln \mathcal{N}_{\alpha}-\mathcal{N}_{\alpha}+O\left(\ln \mathcal{N}_{\alpha}\right)\right] \\
& =-\sum_{\alpha} \mathcal{N}_{\alpha} \ln \frac{\mathcal{N}_{\alpha}}{\mathcal{N}}+O(\ln \mathcal{N}) \\
& =-\mathcal{N}\left[\sum_{\alpha} p_{\alpha} \ln p_{\alpha}+O\left(\frac{\ln \mathcal{N}}{\mathcal{N}}\right)\right]
\end{aligned}
$$

$$
\begin{array}{r}
\underset{\sim}{\text { this maximum }} \begin{array}{r}
\text { is very sharp } \\
\text { at large } N
\end{array}
\end{array} W=\frac{\mathcal{N}!}{\mathcal{N}_{1}!\cdots \mathcal{N}_{\Omega}!} \rightarrow \max \text { (subject to constraints) }
$$

(thus, we determine p_{a} 's by maximising W in this way)

A Fair Game

Using Stirling's formula $\ln \mathcal{N}!=\mathcal{N} \ln \mathcal{N}-\mathcal{N}+O(\ln \mathcal{N})$, get: $\ln W=\underbrace{\mathcal{N} \ln \mathcal{N}-\mathcal{N}}+O(\ln \mathcal{N})-\sum_{\alpha}\left[\mathcal{N}_{\alpha} \ln \mathcal{N}_{\alpha}-\mathcal{A}_{\alpha}+O\left(\ln \mathcal{N}_{\alpha}\right)\right]$

$$
\begin{aligned}
& \sum_{\alpha}\left(\mathcal{N}_{\alpha} \ln \mathcal{N}+\mathcal{N}_{\alpha}\right) \\
= & -\sum_{\alpha} \mathcal{N}_{\alpha} \ln \frac{\mathcal{N}_{\alpha}}{\mathcal{N}}+O(\ln \mathcal{N}) \\
= & -\mathcal{N}\left[\sum_{\alpha} p_{\alpha} \ln p_{\alpha}+O\left(\frac{\ln \mathcal{N}}{\mathcal{N}}\right)\right] .
\end{aligned}
$$

I will call this Gibbs entropy

$$
S_{\mathrm{G}}=-\sum_{\alpha} p_{\alpha} \ln p_{\alpha} \rightarrow \max \text { (subject to constraints) }
$$

(thus, we determine p_{a} 's by maximising S_{G} in this way)

A Fair Game

The entropy of total ignorance is

$$
S=k \cdot \log W
$$

$$
\begin{array}{r}
p_{\alpha}=\frac{1}{\Omega} \Rightarrow S_{\mathrm{G}}=-\sum_{\alpha} \frac{1}{\Omega} \ln \frac{1}{\Omega}=\ln \Omega \\
\text { Boltzmann } \\
\text { entropy }
\end{array}
$$

I will call this Gibbs entropy

LVDWIG BOLTZMANN 1844-1906

$$
S_{\mathrm{G}}=-\sum_{\alpha} p_{\alpha} \ln p_{\alpha} \rightarrow \max \text { (subject to constraints) }
$$

(thus, we determine p_{α} 's by maximising S_{G} in this way)

A Fair Game

The entropy of total ignorance is

$$
S=k \cdot \log W
$$

$p_{\alpha}=\frac{1}{\Omega} \quad \Rightarrow \quad S_{\mathrm{G}}=-\sum_{\alpha} \frac{1}{\Omega} \ln \frac{1}{\Omega}=\ln \Omega$
It corresponds to the number of all possible distributions of N units of probability between
$S_{G, \text { max }}=\frac{1}{\mathcal{N}} \ln W_{\text {max }}=\ln \Omega$
I will call this Gibbs entropy

$$
S_{\mathrm{G}}=-\sum_{\alpha} p_{\alpha} \ln p_{\alpha} \rightarrow \max \text { (subject to constraints) }
$$

(thus, we determine p_{a} 's by maximising S_{G} in this way)

Shannon's Theorem

Was that the only possible fair game?
Shannon declared that a good measure of uncertainty of set of probabilities $p_{\mathfrak{c}}$ called $H\left(p_{1}, \ldots, p_{\Omega}\right)$, must be 1) a continuous function of $p_{a}^{\prime} s$

Claude Shannon (1916-2001)

Shannon's Theorem

Was that the only possible fair game?
Shannon declared that a good measure of uncertainty of set of probabilities $p_{\mathfrak{c}}$ called $H\left(p_{1}, \ldots, p_{\Omega}\right)$, must be

1) a continuous function of p_{α} 's,
2) a symmetric function of p_{α} 's (list order irrelevant)

Claude Shannon (1916-2001)

Shannon's Theorem

Was that the only possible fair game?
Shannon declared that a good measure of uncertainty of set of probabilities p_{∞}, called $H\left(p_{1}, \ldots, p_{\Omega}\right)$, must be

1) a continuous function of p_{α} 's,
2) a symmetric function of p_{α} 's (list order irrelevant),
3) equal probabilities represent maximum uncertainty:

$$
H\left(p_{1}, \ldots, p_{\Omega}\right)<H\left(\frac{1}{\Omega}, \ldots, \frac{1}{\Omega}\right) \equiv H_{\Omega}
$$

Claude Shannon (1916-2001)

Shannon's Theorem

Was that the only possible fair game?
Shannon declared that a good measure of uncertainty of set of probabilities p_{∞} called $H\left(p_{1}, \ldots, p_{\Omega}\right)$, must be

1) a continuous function of p_{α} 's,
2) a symmetric function of $p a$'s (list order irrelevant),
3) equal probabilities represent maximum uncertainty:

$$
H\left(p_{1}, \ldots, p_{\Omega}\right)<H\left(\frac{1}{\Omega}, \ldots, \frac{1}{\Omega}\right) \equiv H_{\Omega}
$$

Claude Shannon (1916-2001)
4) more equiprobable states \rightarrow more uncertainty: if $\Omega^{\prime}>\Omega, H_{\Omega^{\prime}}>H_{\Omega}$

Shannon's Theorem

Was that the only possible fair game?
Shannon declared that a good measure of uncertainty of set of probabilities p_{∞} called $H\left(p_{1}, \ldots, p_{\Omega}\right)$, must be

1) a continuous function of $p_{a} s$,
2) a symmetric function of $p a$'s (list order irrelevant),
3) equal probabilities represent maximum uncertainty:

$$
H\left(p_{1}, \ldots, p_{\Omega}\right)<H\left(\frac{1}{\Omega}, \ldots, \frac{1}{\Omega}\right) \equiv H_{\Omega}
$$

Claude Shannon (1916-2001)
4) more equiprobable states \rightarrow more uncertainty: if $\Omega^{\prime}>\Omega, H_{\Omega^{\prime}}>H_{\Omega}$,
5) additive and independent of counting scheme: if we split all states into subgroups with probabilities w_{i}, and calculate H_{i} for each subgroup (with conditional probabilities p_{a} / w_{i}), then

$$
\underset{\text { uncertainty }}{H\left(p_{1}, \ldots, p_{\Omega}\right)} \underset{\text { in choosing subgroup }}{H\left(w_{1}, w_{2}, \ldots\right)}+\sum_{i} \underset{\substack{\text { uncertainty } \\ \text { uncertainty } \\ \text { within subgroup }}}{ } w_{i} H_{i}
$$

Shannon's Theorem

Was that the only possible fair game?
Shannon declared that a good measure of uncertainty of set of probabilities p_{a} called $H\left(p_{1}, \ldots, p_{\Omega}\right)$, must be

1) a continuous function of $p_{a}^{\prime} s$,
2) a symmetric function of $p a s$ (list order irrelevant),
3) equal probabilities represent maximum uncertainty:

$$
H\left(p_{1}, \ldots, p_{\Omega}\right)<H\left(\frac{1}{\Omega}, \ldots, \frac{1}{\Omega}\right) \equiv H_{\Omega}
$$

Claude Shannon (1916-2001)
4) more equiprobable states \rightarrow more uncertainty: if $\Omega^{\prime}>\Omega, H_{\Omega^{\prime}}>H_{\Omega}$,
5) additive and independent of counting scheme: if we split all states into subgroups with probabilities w_{i}, and calculate H_{i} for each subgroup (with conditional probabilities p_{a} / w_{i}), then

$$
\underset{\substack{\text { total } \\ \text { uncertainty }}}{H\left(p_{1}, \ldots, p_{\Omega}\right)} \underset{\text { in choosing subgroup }}{H\left(w_{1}, w_{2}, \ldots\right)}+\sum_{i} \underset{\substack{\text { uncertainty } \\ \text { within subgroup }}}{ } w_{i} H_{i}
$$

He then proved that the only function with these properties is

$$
H\left(p_{1}, \ldots, p_{\Omega}\right)=-k \sum_{\alpha} p_{\alpha} \ln p_{\alpha}=k S_{\mathrm{G}}
$$

How to Maximise Entropy (with strings attached)

$$
\begin{aligned}
& \Lambda= \uparrow_{\text {Entropy }}^{S}\left(p_{1}, \ldots, p_{\Omega}\right)- \\
& \sum_{i} \sum_{\text {"Lagrange }} \lambda_{i} F_{i}\left(p_{1}, \ldots, p_{\Omega}\right) \rightarrow \max \\
&-\sum_{\alpha} p_{\alpha} \ln p_{\alpha} \\
& \text { multipliers" } F_{i}\left(p_{1}, \ldots, p_{\Omega}\right)=0
\end{aligned}
$$

How to Maximise Entropy (with strings attached)

$$
\begin{aligned}
\Lambda=\underbrace{}_{\text {Entropy }}\left(p_{1}, \ldots, p_{\Omega}\right)- & \sum_{i} \sum_{i} \lambda_{i} F_{i}\left(p_{1}, \ldots, p_{\Omega}\right) \rightarrow \max \\
-\sum_{\alpha} p_{\alpha} \ln p_{\alpha} & \overbrace{\text { congrange }} \\
\text { multipliers" } & F_{i}\left(p_{1}, \ldots, p_{\Omega}\right)=0 \\
\text { Always: } & \sum_{\alpha} p_{\alpha}-1=0 \\
\text { Mean energy known: } & \sum_{\alpha} p_{\alpha} E_{\alpha}-U=0
\end{aligned}
$$

Total Ignorance (Isolated System)

$\Lambda=-\sum_{\alpha} p_{\alpha} \ln p_{\alpha}-\lambda\left(\sum_{\alpha} p_{\alpha}-1\right) \rightarrow \max$

$$
\frac{\partial \Lambda}{\partial p_{\alpha}}=-\ln p_{\alpha}-1-\lambda=0 \quad \Rightarrow \quad p_{\alpha}=e^{-(1+\lambda)} \quad \text { all equal }
$$

Total Ignorance (Isolated System)

$\Lambda=-\sum_{\alpha} p_{\alpha} \ln p_{\alpha}-\lambda\left(\sum_{\alpha} p_{\alpha}-1\right) \rightarrow \max$

$$
\begin{aligned}
\frac{\partial \Lambda}{\partial p_{\alpha}} & =-\ln p_{\alpha}-1-\lambda=0 & \Rightarrow & p_{\alpha}=e^{-(1+\lambda)}
\end{aligned} \quad \text { all equal } \quad \text { 立 }=\sum_{\alpha} p_{\alpha}-1=0 \quad \Rightarrow \quad p_{\alpha}=\frac{1}{\Omega} \quad \text { method works! }
$$

Gibbs' Ensemble

$$
\Lambda=-\sum_{\alpha} p_{\alpha} \ln p_{\alpha}-\lambda\left(\sum_{\alpha} p_{\alpha}-1\right)-\beta\left(\sum_{\alpha} p_{\alpha} E_{\alpha}-U\right) \rightarrow \max
$$

$$
\frac{\partial \Lambda}{\partial p_{\alpha}}=-\ln p_{\alpha}-1-\lambda-\beta E_{\alpha}=0 \quad \Rightarrow \quad p_{\alpha}=e^{-(1+\lambda)-\beta E_{\alpha}}
$$

Gibbs' Ensemble

$$
\Lambda=-\sum_{\alpha} p_{\alpha} \ln p_{\alpha}-\lambda\left(\sum_{\alpha} p_{\alpha}-1\right)-\beta\left(\sum_{\alpha} p_{\alpha} E_{\alpha}-U\right) \rightarrow \max
$$

$$
\begin{array}{rlrl}
\frac{\partial \Lambda}{\partial p_{\alpha}}=-\ln p_{\alpha}-1-\lambda-\beta E_{\alpha}=0 & \Rightarrow & p_{\alpha}=e^{-(1+\lambda)-\beta E_{\alpha}} \\
\frac{\partial \Lambda}{\partial \lambda}=\sum_{\alpha} p_{\alpha}-1=0 & & \Rightarrow & e^{-(1+\lambda)} \sum_{\alpha} e^{-\beta E_{\alpha}}=1
\end{array}
$$

Gibbs' Ensemble

$$
\Lambda=-\sum_{\alpha} p_{\alpha} \ln p_{\alpha}-\lambda\left(\sum_{\alpha} p_{\alpha}-1\right)-\beta\left(\sum_{\alpha} p_{\alpha} E_{\alpha}-U\right) \rightarrow \max
$$

$$
\begin{array}{rlrl}
\frac{\partial \Lambda}{\partial p_{\alpha}}=-\ln p_{\alpha}-1-\lambda-\beta E_{\alpha}=0 & \Rightarrow & p_{\alpha}=e^{-(1+\lambda)-\beta E_{\alpha}} \\
\frac{\partial \Lambda}{\partial \lambda}=\sum_{\alpha} p_{\alpha}-1=0 & \Rightarrow & e^{-(1+\lambda)} &
\end{array}
$$

Gibbs' Ensemble

$$
\Lambda=-\sum_{\alpha} p_{\alpha} \ln p_{\alpha}-\lambda\left(\sum_{\alpha} p_{\alpha}-1\right)-\beta\left(\sum_{\alpha} p_{\alpha} E_{\alpha}-U\right) \rightarrow \max
$$

If we add an extra constraint,

$$
\text { Always: } \quad \sum_{\alpha} p_{\alpha}-1=0
$$

$$
\begin{array}{rlr}
\frac{\partial \Lambda}{\partial p_{\alpha}}=-\ln p_{\alpha}-1-\lambda-\beta E_{\alpha}=0 & \Rightarrow & p_{\alpha}=e^{-(1+\lambda)-\beta E_{\alpha}}=\frac{1}{Z(\beta)} e^{-\beta E_{\alpha}} \\
\frac{\partial \Lambda}{\partial \lambda}=\sum_{\alpha} p_{\alpha}-1=0 & \Rightarrow & e^{-(1+\lambda)}
\end{array}
$$

Gibbs' Ensemble

$$
\Lambda=-\sum_{\alpha} p_{\alpha} \ln p_{\alpha}-\lambda\left(\sum_{\alpha} p_{\alpha}-1\right)-\beta\left(\sum_{\alpha} p_{\alpha} E_{\alpha}-U\right) \rightarrow \max
$$

$$
\begin{array}{rlrl}
\frac{\partial \Lambda}{\partial p_{\alpha}}=-\ln p_{\alpha}-1-\lambda-\beta E_{\alpha}=0 & \Rightarrow & p_{\alpha}=e^{-(1+\lambda)-\beta E_{\alpha}}=\frac{1}{Z(\beta)} e^{-\beta E_{\alpha}} \\
\frac{\partial \Lambda}{\partial \lambda}=\sum_{\alpha} p_{\alpha}-1=0 & \Rightarrow & e^{-(1+\lambda)} \sum_{\alpha}^{-\beta E_{\alpha}}=1 \\
\frac{\partial \Lambda}{\partial \beta}=\sum_{\alpha} p_{\alpha} E_{\alpha}-U=0 \Rightarrow & U=\sum_{\alpha} \frac{E_{\alpha} e^{-\beta E_{\alpha}}}{Z(\beta)}=-\frac{1}{Z} \frac{\partial Z}{\partial \beta}
\end{array}
$$

Gibbs' Ensemble

$p_{\alpha}=\frac{e^{-\beta E_{\alpha}}}{Z(\beta)}$ likelihoods based of knowledge of U
$Z(\beta)=\sum_{\alpha} e^{-\beta E_{\alpha}}$ normalisation constant
$U=-\frac{1}{Z} \frac{\partial Z}{\partial \beta} \quad$ implicit equation for mysterious β

Josiah Willard Gibbs (1839-1903)

It looks like we have calculated something, but what does it mean?

Gibbs' Ensemble

$p_{\alpha}=\frac{e^{-\beta E_{\alpha}}}{Z(\beta)}$ likelihoods based of knowledge of U
$Z(\beta)=\sum_{\alpha} e^{-\beta E_{\alpha}}$ normalisation constant
$U=-\frac{1}{Z} \frac{\partial Z}{\partial \beta} \quad$ implicit equation for mysterious β

Josiah Willard Gibbs (1839-1903)

It looks like we have calculated something, but what does it mean?

$$
\begin{aligned}
S_{\mathrm{G}} & =-\sum_{\alpha} p_{\alpha} \ln p_{\alpha}=-\sum_{\alpha} p_{\alpha}\left(-\beta E_{\alpha}-\ln Z\right)=\beta U+\ln Z . \\
\mathrm{d} S_{\mathrm{G}} & =\beta \mathrm{d} U+U \mathrm{~d} \beta+\frac{\mathrm{d} Z}{Z} \quad \begin{array}{c}
\text { "d" here means we are varying some } \\
\text { parameter of the equilibrium, say } V
\end{array}
\end{aligned}
$$

Gibbs' Ensemble

$p_{\alpha}=\frac{e^{-\beta E_{\alpha}}}{Z(\beta)}$ likelihoods based of knowledge of U
$Z(\beta)=\sum_{\alpha} e^{-\beta E_{\alpha}}$ normalisation constant
$U=-\frac{1}{Z} \frac{\partial Z}{\partial \beta} \quad$ implicit equation for mysterious β

Josiah Willard Gibbs (1839-1903)

It looks like we have calculated something, but what does it mean?

$$
\begin{aligned}
S_{\mathrm{G}} & =-\sum_{\alpha} p_{\alpha} \ln p_{\alpha}=-\sum_{\alpha} p_{\alpha}\left(-\beta E_{\alpha}-\ln Z\right)=\beta U+\ln Z . \\
\mathrm{d} S_{\mathrm{G}} & =\beta \mathrm{d} U+U \mathrm{~d} \beta+\frac{\mathrm{d} Z}{Z} \quad \begin{array}{c}
\text { "d" here means we are varying some } \\
\text { parameter of the equilibrium, say } V
\end{array} \\
& =\beta \mathrm{d} U+U \alpha \beta+\sum_{\alpha} \underbrace{\frac{e^{-\beta E_{\alpha}}}{Z}}_{=p_{\alpha}}\left(-\beta \mathrm{d} E_{\alpha}-E_{\alpha} \mathrm{d} \beta\right)
\end{aligned}
$$

Gibbs' Ensemble

$p_{\alpha}=\frac{e^{-\beta E_{\alpha}}}{Z(\beta)}$ likelihoods based of knowledge of U
$Z(\beta)=\sum_{\alpha} e^{-\beta E_{\alpha}}$ normalisation constant
$U=-\frac{1}{Z} \frac{\partial Z}{\partial \beta} \quad$ implicit equation for mysterious β

Josiah Willard Gibbs (1839-1903)

It looks like we have calculated something, but what does it mean?

$$
\begin{aligned}
S_{\mathrm{G}} & =-\sum_{\alpha} p_{\alpha} \ln p_{\alpha}=-\sum_{\alpha} p_{\alpha}\left(-\beta E_{\alpha}-\ln Z\right)=\beta U+\ln Z . \\
\mathrm{d} S_{\mathrm{G}} & =\beta \mathrm{d} U+U \mathrm{~d} \beta+\frac{\mathrm{d} Z}{Z} \\
& =\beta \mathrm{d} U+U \mathrm{~d} \beta+\sum_{\alpha} \underbrace{e^{-\beta E_{\alpha}}}_{=p_{\alpha}}\left(-\beta\left(\mathrm{d} E_{\alpha}\right)-E_{\alpha} \mathrm{d} \beta\right)
\end{aligned}
$$

Gibbs' Ensemble

$p_{\alpha}=\frac{e^{-\beta E_{\alpha}}}{Z(\beta)}$ likelihoods based of knowledge of U
$Z(\beta)=\sum_{\alpha} e^{-\beta E_{\alpha}}$ normalisation constant
$U=-\frac{1}{Z} \frac{\partial Z}{\partial \beta} \quad$ implicit equation for mysterious β

Josiah Willard Gibbs (1839-1903)

It looks like we have calculated something, but what does it mean?

$$
\begin{aligned}
S_{\mathrm{G}} & =-\sum_{\alpha} p_{\alpha} \ln p_{\alpha}=-\sum_{\alpha} p_{\alpha}\left(-\beta E_{\alpha}-\ln Z\right)=\beta U+\ln Z . \\
\mathrm{d} S_{\mathrm{G}} & =\beta \mathrm{d} U+U \mathrm{~d} \beta+\frac{\mathrm{d} Z}{Z} \\
& =\beta \mathrm{d} U+U \mathrm{~d} \beta+\sum_{\alpha} \underbrace{\frac{e^{-\beta E_{\alpha}}}{Z}}_{=p_{\alpha}}\left(-\beta\left(E_{\alpha}\right)-E_{\alpha} \mathrm{d} \beta\right) \quad P=\frac{\partial E_{\alpha}}{\partial V} \mathrm{~d} V \\
& =\beta(\mathrm{d} U+P \mathrm{~d} V) \quad \text { pressure }
\end{aligned}
$$

Gibbs' Ensemble

$p_{\alpha}=\frac{e^{-\beta E_{\alpha}}}{Z(\beta)}$ likelihoods based of knowledge of U
$Z(\beta)=\sum_{\alpha} e^{-\beta E_{\alpha}}$ normalisation constant
$U=-\frac{1}{Z} \frac{\partial Z}{\partial \beta} \quad$ implicit equation for mysterious β

Josiah Willard Gibbs (1839-1903)

It looks like we have calculated something, but what does it mean?

$$
\begin{aligned}
& S_{\mathrm{G}}=-\sum_{\alpha} p_{\alpha} \ln p_{\alpha}=-\sum_{\alpha} p_{\alpha}\left(-\beta E_{\alpha}-\ln Z\right)=\beta U+\ln Z . \\
& \mathrm{d} S_{\mathrm{G}}=\beta \mathrm{d} U+U \mathrm{~d} \beta+\frac{\mathrm{d} Z}{Z} \\
&=\beta \mathrm{d} U+U \mathrm{~d} \beta+\sum_{\alpha} \underbrace{\frac{e^{-\beta E_{\alpha}}}{Z}}_{=p_{\alpha}}\left(-\beta \mathrm{d} E_{\alpha}-E_{\alpha} \mathrm{d} \beta\right) \\
&=\beta(\mathrm{d} U+P \mathrm{~d} V)=\beta(\mathrm{d} U-\mathrm{d} W)=\beta \mathrm{d} Q_{\mathrm{rev}} \quad \text { heat in a reversible pry } \\
& \text { = energy }
\end{aligned}
$$

Gibbs' Ensemble

$p_{\alpha}=\frac{e^{-\beta E_{\alpha}}}{Z(\beta)}$ likelihoods based of knowledge of U
$Z(\beta)=\sum_{\alpha} e^{-\beta E_{\alpha}}$ normalisation constant
$U=-\frac{1}{Z} \frac{\partial Z}{\partial \beta} \quad$ implicit equation for mysterious β

Josiah Willard Gibbs (1839-1903)

It looks like we have calculated something, but what does it mean?
Thus, change of entropy is proportional to reversible heat, $\mathrm{d} S_{\mathrm{G}}=\beta \mathrm{d} Q_{\mathrm{rev}}$ and the const of proportionality is β.

Entropy Is "Real"!

$p_{\alpha}=\frac{e^{-\beta E_{\alpha}}}{Z(\beta)}$ likelihoods based of knowledge of U
$Z(\beta)=\sum_{\alpha} e^{-\beta E_{\alpha}}$ normalisation constant
$U=-\frac{1}{Z} \frac{\partial Z}{\partial \beta} \quad$ implicit equation for mysterious β

Josiah Willard Gibbs (1839-1903)

It looks like we have calculated something, but what does it mean?
Thus, change of entropy is proportional to reversible heat, $\mathrm{d} S_{\mathrm{G}}=\beta \mathrm{d} Q_{\mathrm{rev}} \quad$ and the const of proportionality is β. Therefore,

$$
\begin{array}{ll}
\mathrm{d} S=\frac{\mathrm{d} Q_{\mathrm{rev}}}{T} & \beta=\frac{1}{k_{\mathrm{B}} T} \\
& \text { temperature }
\end{array}
$$

$$
\beta=\frac{1}{k_{\mathrm{B}} T} \quad \text { and } \quad S=k_{\mathrm{B}} S_{\mathrm{G}}
$$

Gibbs entropy is thermodynamic entropy!

System in a Bath

$$
p_{\alpha}=\frac{e^{-\beta E_{\alpha}}}{Z(\beta)}
$$

Josiah Willard Gibbs (1839-1903)

It looks like we have calculated something, but what does it mean?
Physically, a system at fixed temperature is a system embedded in a "thermal bath",
i.e., a much larger environment with which it can exchange energy

$$
\beta=\frac{1}{k_{\mathrm{B}} T} \quad \text { and } \quad S=k_{\mathrm{B}} S_{\mathrm{G}}
$$

Gibbs entropy is
temperature thermodynamic entropy!

System in a Bath

$$
p_{\alpha}=\frac{e^{-\beta E_{\alpha}}}{Z(\beta)}
$$

Josiah Willard Gibbs (1839-1903)

It looks like we have calculated something, but what does it mean?
Physically, a system at fixed temperature is a system embedded in a "thermal bath",
i.e., a much larger environment with which it can exchange energy

more fun and games with thermodynamics in J. Chalker's lecture

The Second Law

The thermodynamic entropy of the world (closed system) increases with time.

The Second Law

The thermodynamic entropy of the world (closed system) increases with time.

The Second Law

The thermodynamic entropy of the world (closed system) increases with time.
Time t : Measure something about some part of the world, maximise S_{G} subject to that info, get a set of p_{a} 's and

$$
S(t)=k_{\mathrm{B}} S_{\mathrm{G}, \max }(t)
$$

The Second Law

The thermodynamic entropy of the world (closed system) increases with time.
Time t : Measure something about some part of the world, maximise S_{G} subject to that info, get a set of p_{α} 's and

$$
S(t)=k_{\mathrm{B}} S_{\mathrm{G}, \max }(t)
$$

Time $\boldsymbol{t}^{\prime}>\boldsymbol{t}$: Consider the evolution of the system since t : states evolve: $\alpha(t) \rightarrow \alpha\left(t^{\prime}\right)$, but their probabilities stay the same, so

$$
S_{\mathrm{G}}\left(t^{\prime}\right)=-\sum_{\alpha} p_{\alpha} \ln p_{\alpha}=S_{\mathrm{G}}(t)=S_{\mathrm{G}, \max }(t)=\frac{1}{k_{\mathrm{B}}} S(t)
$$

The Second Law

The thermodynamic entropy of the world (closed system) increases with time.
Time t : Measure something about some part of the world, maximise S_{G} subject to that info, get a set of p_{a} 's and

$$
S(t)=k_{\mathrm{B}} S_{\mathrm{G}, \max }(t)
$$

Time $t^{\prime}>\boldsymbol{t}$: Consider the evolution of the system since t :
states evolve: $\alpha(t) \rightarrow \alpha\left(t^{\prime}\right)$,
but their probabilities stay the same, so

$$
S_{\mathrm{G}}\left(t^{\prime}\right)=-\sum_{\alpha} p_{\alpha} \ln p_{\alpha}=S_{\mathrm{G}}(t)=S_{\mathrm{G}, \max }(t)=\frac{1}{k_{\mathrm{B}}} S(t)
$$

Now forget all you knew, make a new measurement, and maximise S_{G} again:

$$
S\left(t^{\prime}\right)=\underbrace{k_{\mathrm{B}} S_{\mathrm{G}, \max }\left(t^{\prime}\right)}_{\begin{array}{c}
\text { the new } S_{\mathrm{G}}, \\
\text { maximised at } \\
\text { time } t^{\prime}
\end{array}} \geqslant \underbrace{k_{\mathrm{B}} S_{\mathrm{G}}\left(t^{\prime}\right)}_{\begin{array}{c}
\text { the "true" } \\
S_{\mathrm{G}}, \text { evolved } \\
\text { from time } t
\end{array}}=k_{\mathrm{B}} S_{\mathrm{G}}(t)=S(t)
$$

The Second Law

The thermodynamic entropy of the world (closed system) increases with time.
Time t : Measure something about some part of the world, maximise S_{G} subject to that info, get a set of p_{a} 's and

$$
S(t)=k_{\mathrm{B}} S_{\mathrm{G}, \max }(t)
$$

Time $t^{\prime}>\boldsymbol{t}$: Consider the evolution of the system since t :
states evolve: $\alpha(t) \rightarrow \alpha\left(t^{\prime}\right)$,
but their probabilities stay the same, so

$$
S_{\mathrm{G}}\left(t^{\prime}\right)=-\sum_{\alpha} p_{\alpha} \ln p_{\alpha}=S_{\mathrm{G}}(t)=S_{\mathrm{G}, \max }(t)=\frac{1}{k_{\mathrm{B}}} S(t)
$$

Now forget all you knew, make a new measurement, and maximise S_{G} again:

$$
S\left(t^{\prime}\right)=k_{\mathrm{B}} S_{\mathrm{G}, \max }\left(t^{\prime}\right) \geqslant k_{\mathrm{B}} S_{\mathrm{G}}\left(t^{\prime}\right) \quad=k_{\mathrm{B}} S_{\mathrm{G}}(t)=S(t)
$$

Thus, $S\left(t^{\prime}\right)>S(t)$ at $t^{\prime}>t$, q.e.d.

The Second Law

The thermodynamic entropy of the world (closed system) increases with time.
The increase of S reflects our insistence to forget the detailed knowledge that we possess as a result of evolving in time any earlier state (even if based on earlier statistical inference) and re-apply at every later time the rules of statistical inference based on knowledge obtained in new measurements.

The Second Law

The thermodynamic entropy of the world (closed system) increases with time.
The increase of S reflects our insistence to forget the detailed knowledge that we possess as a result of evolving in time any earlier state (even if based on earlier statistical inference) and re-apply at every later time the rules of statistical inference based on knowledge obtained in new measurements.
> Clearly, the observer and her apparatus must be inside the system, otherwise it is not closed and observer will destroy the correspondence $\alpha(t) \rightarrow \alpha\left(t^{\prime}\right)$

The Second Law

The thermodynamic entropy of the world (closed system) increases with time.
The increase of S reflects our insistence to forget the detailed knowledge that we possess as a result of evolving in time any earlier state (even if based on earlier statistical inference) and re-apply at every later time the rules of statistical inference based on k.nowledge obtained in new measurements.
> Clearly, the observer and her apparatus must be inside the system, otherwise it is not closed and observer will destroy the correspondence $\alpha(t) \rightarrow \alpha\left(t^{\prime}\right)$
$>S=$ entropy of the object of measurement + entropy of observer \& her kit. A very precise measurement will imply massive increase in the latter. (More generally, the system gets entangled with its environment and when we measure it, our ignorance of the latter pollutes our knowledge of the former.)

The Second Law

The thermodynamic entropy of the world (closed system) increases with time.
The increase of S reflects our insistence to forget the detailed knowledge that we possess as a result of evolving in time any earlier state (even if based on earlier statistical inference) and re-apply at every later time the rules of statistical inference based on knowledge obtained in new measurements.
> Clearly, the observer and her apparatus must be inside the system, otherwise it is not closed and observer will destroy the correspondence $\alpha(t) \rightarrow \alpha\left(t^{\prime}\right)$
$>S=$ entropy of the object of measurement + entropy of observer \& her kit. A very precise measurement will imply massive increase in the latter. (More generally, the system gets entangled with its environment and when we measure it, our ignorance of the latter pollutes our knowledge of the former.)

go seriously quantum with Sid Parameswaran

