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The Philosophy of Good-Enough-ism

Mean energy:

Pressure:

external parameter
(volume)

How likely is it to happen?
This is what we want to determine. We do not need to know

the p! ’s in any “true” sense.
We just need to know such p! ’s
that the few macroscopic quantities
that we are ever likely to measure
come out right.



Trainspotter’s Statistics

p!= frequency with which system visits !.

Technically speaking, to know this, we need to understand
(or assume something about) the system’s dynamics.

Also, we must believe that the time necessary for the system
to visit all of its phase space is a reasonable time for us to wait.

This is not, however, how forecasting works...
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Gambler’s Statistics

p!= likelihood that the system is in !.

A fair and adequate assignment of likelihoods must be based on
some information about the system, however incomplete.

If we know nothing, the only adequate expectation is
isolated system
in equilibrium
(Boltzmann’s 
equal a priori probabilities
postulate)

Ludwig
Boltzmann
(1844-1906)



Gambler’s Statistics

p!= likelihood that the system is in !.

A fair and adequate assignment of likelihoods must be based on
some information about the system, however incomplete.

What if we know one thing, e.g., mean energy:

This is one constraint on ">>>>1 likelihoods.
How do we work out p!’s using this and only this information?
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A Fair Game

1) Randomly assign N >> ! “units of likelihood” to each of ! states:
N" to state ". Then

2) Check that these p" satisfy constraints imposed by knowledge.
If not, keep trying until they do. 

Principle: use knowledge available, admit ignorance of  everything else.

The most likely outcome of this game is the one that can be obtained
in the largest number of ways:
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A Fair Game

→ max (subject to constraints)

(thus, we determine p!’s by maximising SG in this way)

I will call this Gibbs entropy

The entropy of total ignorance is

Boltzmann
entropy

It corresponds to the number
of all possible distributions of
N units of probability between
" states:                      , so
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Shannon’s Theorem
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Shannon declared that a good measure of uncertainty of set of
probabilities p!, called                        , must be 
1) a continuous function of p!’s,
2) a symmetric function of p!’s (list order irrelevant),
3) equal probabilities represent maximum uncertainty:

4) more equiprobable states → more uncertainty: if                                 , 
5) additive and independent of counting scheme: if we split all states into

subgroups with probabilities wi , and calculate Hi for each subgroup 
(with conditional probabilities p!/wi ), then  

total
uncertainty

uncertainty
in choosing subgroup

uncertainty
within subgroup

He then proved that the only function with these properties is

Claude Shannon
(1916-2001)
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Always:

Mean energy known:

...etc.
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Always:

Mean energy known:
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all equal

method works!
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heat in a reversible process
= energy - work 
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Entropy Is “Real”!

likelihoods based of  knowledge of  U

normalisation constant

implicit equation for mysterious ! Josiah Willard Gibbs
(1839-1903)

Thus, change of entropy is
proportional to reversible heat,
and the const of proportionality is !.
Therefore,

and

temperature
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System in a Bath

Josiah Willard Gibbs
(1839-1903)

Physically, a system at fixed temperature is a system embedded
in a “thermal bath”, 

i.e., a much larger environment with which it can exchange energy

It looks like we have calculated something, but what does it mean?

more fun and games
with thermodynamics
in J. Chalker’s lecture
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Time t’>t : Consider the evolution of the system since t :
states evolve:                     , 
but their probabilities stay the same, so

Now forget all you knew, make a new measurement,
and maximise SG again:

Thus,                                      , q.e.d.
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Ø S = entropy of the object of measurement + entropy of observer & her kit.
A very precise measurement will imply massive increase in the latter.
(More generally, the system gets entangled with its environment and when
we measure it, our ignorance of the latter pollutes our knowledge of the former.)

go seriously quantum
with Sid Parameswaran


